Practical Introduction to Natural Language Processing
Buy now
Learn more
Introduction
01 Course and Instructor Introduction.mp4
Slack channel Invite
A note on subtitles for the course!
02 Course Curriculum.mp4
03 Introduction to NLP and its terms.mp4
Course Code and Resources Link
Module 1.1: Dataset creation
04 Methods for Dataset Collection.mp4
05 Parse Wikipedia movie titles and links using Beautifulsoup Library.mp4
06 Parse movie plot from a movie's Wiki page.mp4
07 Combine and collect all American movie plots.mp4
08 Collect Dataset with no-code tools - Parsehub.mp4
09 Collect novel Datasets with GPT-3.mp4
10 Install Github Desktop and create Github Repository.mp4
11 Deploy Dataset Visualizer on Streamlit Cloud for free.mp4
12 Understanding the Streamlit Code for Dataset Visualization.mp4
Module 1.2: TF-IDF algorithm and applications
13 Text to Vector and TF-IDF Introduction.mp4
14 Code - Tokenization of text.mp4
15 Code - Get term frequency of words in a movie plot.mp4
16 Code - Get document frequency and calculate TF-IDF of a movie plot.mp4
17 Code - Calculate TF-IDF vector using Sklearn Library.mp4
18 Code - TF-IDF Applications.mp4
19 - Add TF-IDF to the moviepro.ai Streamlit App.mp4
Project 1: Use N-grams to find the most diverse paraphrase sentence
20 Project 1 Problem - Sort paraphrases by their diversity using N-grams.mp4
21 Project 1 Solution - Sort paraphrases by their diversity using N-grams.mp4
Module 2: Data Visualization, Word Vectors and Sentence Transformers
22 Evolution of word vectors Part 1- TFIDF and Word2vec.mp4
23 Evolution of word vectors Part 2- Contextual embeddings and Sentence Transformers.mp4
24 Theory - Localization using NER and Word Vectors.mp4
25 Code - Localization using NER and Word Vectors.mp4
26 Theory - Data Visualization and Dimensionality Reduction.mp4
27 Code - Data Visualization and Dimensionality Reduction.mp4
Module 3: Keyword extraction, Similarity Search and Topic Modeling
28 - Theory - Keyword extraction with Sentence Transformers and diversity with MMR and Max Sum Similarity.mp4
29 - Code - Keyword extraction with Sentence Transformers and diversity with MMR and Max Sum Similarity.mp4
30 - Adding Sentence Transformers to Streamlit App.mp4
31 Theory - Topic Modeling using Sentence Transformers.mp4
32 Code - Topic Modeling using Sentence Transformers.mp4
Module 4: GPT-3, Production API Deployment and Full-stack App
33 Build an AI SaaS with GPT-3.mp4
34 Introduction to GPT-3 - Theory.mp4
35 - Introduction to GPT-3 Playground.mp4
36 - Understanding GPT-3 Parameters.mp4
37 - Create new paraphrase pairs dataset with GPT-3.mp4
38 - Build a paraphraser GPT-3 playground.mp4
39 - Sentence paraphraser using GPT-3 in code.mp4
40 - Paraphrase multiple sentences in parallel using GPT-3.mp4
41 - Introduction to ML Deployment.mp4
42 - Install AWS CLI and AWS SAM CLI.mp4
43 - Create Sentence Paraphraser API on AWS.mp4
44 - Setup text Paraphraser for AWS Lambda container deployment.mp4
45 - Deploy text paraphraser API on AWS Lambda Container Image.mp4
46 - Deploy Question Answering with Provisioned concurrency on Lambda.mp4
47 - Limitations of Streamlit and need for Bubble.io.mp4
48 - Nocode tool capabilties.mp4
49 - Introduction to Bubble Editor.mp4
50 - Input Output Textboxes and Buttons with Bubble.io.mp4
51 - API connector using Bubble.io.mp4
52 - Add Login and Signup Functionality using Bubble.io.mp4
53- Make database changes and implement fixed runs with Bubble.io.mp4
54 - A Guide to JSON output with LLM prompts.mp4
Products
Course
Section
Lesson
12 Understanding the Streamlit Code for Dataset Visualization.mp4
12 Understanding the Streamlit Code for Dataset Visualization.mp4
Practical Introduction to Natural Language Processing
Buy now
Learn more
Introduction
01 Course and Instructor Introduction.mp4
Slack channel Invite
A note on subtitles for the course!
02 Course Curriculum.mp4
03 Introduction to NLP and its terms.mp4
Course Code and Resources Link
Module 1.1: Dataset creation
04 Methods for Dataset Collection.mp4
05 Parse Wikipedia movie titles and links using Beautifulsoup Library.mp4
06 Parse movie plot from a movie's Wiki page.mp4
07 Combine and collect all American movie plots.mp4
08 Collect Dataset with no-code tools - Parsehub.mp4
09 Collect novel Datasets with GPT-3.mp4
10 Install Github Desktop and create Github Repository.mp4
11 Deploy Dataset Visualizer on Streamlit Cloud for free.mp4
12 Understanding the Streamlit Code for Dataset Visualization.mp4
Module 1.2: TF-IDF algorithm and applications
13 Text to Vector and TF-IDF Introduction.mp4
14 Code - Tokenization of text.mp4
15 Code - Get term frequency of words in a movie plot.mp4
16 Code - Get document frequency and calculate TF-IDF of a movie plot.mp4
17 Code - Calculate TF-IDF vector using Sklearn Library.mp4
18 Code - TF-IDF Applications.mp4
19 - Add TF-IDF to the moviepro.ai Streamlit App.mp4
Project 1: Use N-grams to find the most diverse paraphrase sentence
20 Project 1 Problem - Sort paraphrases by their diversity using N-grams.mp4
21 Project 1 Solution - Sort paraphrases by their diversity using N-grams.mp4
Module 2: Data Visualization, Word Vectors and Sentence Transformers
22 Evolution of word vectors Part 1- TFIDF and Word2vec.mp4
23 Evolution of word vectors Part 2- Contextual embeddings and Sentence Transformers.mp4
24 Theory - Localization using NER and Word Vectors.mp4
25 Code - Localization using NER and Word Vectors.mp4
26 Theory - Data Visualization and Dimensionality Reduction.mp4
27 Code - Data Visualization and Dimensionality Reduction.mp4
Module 3: Keyword extraction, Similarity Search and Topic Modeling
28 - Theory - Keyword extraction with Sentence Transformers and diversity with MMR and Max Sum Similarity.mp4
29 - Code - Keyword extraction with Sentence Transformers and diversity with MMR and Max Sum Similarity.mp4
30 - Adding Sentence Transformers to Streamlit App.mp4
31 Theory - Topic Modeling using Sentence Transformers.mp4
32 Code - Topic Modeling using Sentence Transformers.mp4
Module 4: GPT-3, Production API Deployment and Full-stack App
33 Build an AI SaaS with GPT-3.mp4
34 Introduction to GPT-3 - Theory.mp4
35 - Introduction to GPT-3 Playground.mp4
36 - Understanding GPT-3 Parameters.mp4
37 - Create new paraphrase pairs dataset with GPT-3.mp4
38 - Build a paraphraser GPT-3 playground.mp4
39 - Sentence paraphraser using GPT-3 in code.mp4
40 - Paraphrase multiple sentences in parallel using GPT-3.mp4
41 - Introduction to ML Deployment.mp4
42 - Install AWS CLI and AWS SAM CLI.mp4
43 - Create Sentence Paraphraser API on AWS.mp4
44 - Setup text Paraphraser for AWS Lambda container deployment.mp4
45 - Deploy text paraphraser API on AWS Lambda Container Image.mp4
46 - Deploy Question Answering with Provisioned concurrency on Lambda.mp4
47 - Limitations of Streamlit and need for Bubble.io.mp4
48 - Nocode tool capabilties.mp4
49 - Introduction to Bubble Editor.mp4
50 - Input Output Textboxes and Buttons with Bubble.io.mp4
51 - API connector using Bubble.io.mp4
52 - Add Login and Signup Functionality using Bubble.io.mp4
53- Make database changes and implement fixed runs with Bubble.io.mp4
54 - A Guide to JSON output with LLM prompts.mp4
Lesson unavailable
Please
login to your account
or
buy the course
.